Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738855

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is attracting a great deal of attention as a viable approach to exploit unutilized wavelengths of light in solar-driven devices. Recently, ligand-protected metal nanoclusters have emerged as a compelling platform for serving as triplet sensitizers for TTA-UC. In this study, we developed an atomically precise, triplet-mediator ligand (TL)-protected metal nanocluster, Au2Cu6(S-Adm)6[P(DPA)3]2 (Au2Cu6DPA; S-Adm = 1-adamanthanethiolate, DPA = 9,10-diphenylanthracene). In Au2Cu6DPA, the excitation of the Au2Cu6 core rapidly generates a metal-to-ligand charge transfer state, followed by the formation of the long-lived triplet state (approximately 150 µs) at a DPA site in the TL. By combining Au2Cu6DPA with a DPA annihilator, we achieved a red-to-blue upconversion quantum yield (ΦUCg) of 20.7 ± 0.4% (50% max.) with a low threshold excitation intensity of 36 mW cm-2 at 640 nm. This quantum yield almost reaches the maximum limit achievable using a DPA annihilator and establishes a record-setting value, outperforming previously reported nanocrystal and nanocluster sensitizers. Furthermore, strong upconversion emission based on a pseudo-first-order TTA process was observed under 1 sun illumination, indicating that the Au2Cu6DPA sensitizer holds promise for applications in solar-energy-based systems.

2.
Nanoscale ; 16(6): 3053-3060, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38240331

RESUMO

Ligand-protected metal nanoclusters have emerged as a promising platform for providing sensitizers for triplet-triplet annihilation upconversion (TTA-UC). Herein, we report [PtAg28(BDT)12]4- (PtAg28; BDT = 1,3-benzenedithiolate) as a sensitizer enabling TTA-UC at low excitation intensities. PtAg28 exhibits a long-lived triplet state (approximately 7 µs) generated with a 100% intersystem crossing (ISC) quantum yield. The mechanism driving this efficient ISC was unveiled with the aid of theoretical calculations. Specifically, the S1-T1 ISC reveals a small spin-orbit coupling (SOC) matrix element, attributed to their similar electron configuration. In contrast, the T2 state, which is energetically close to S1, features a hole distribution derived from the Py superatomic orbital of the icosahedral Pt@Ag12 core. This distribution enables direct SOC based on the orbital angular momentum change from the S1 state with a Pz-derived hole distribution. Consequently, the efficient ISC was rationalized by the S1 → T2 → T1 pathway. The T1 state possesses a metal core-to-surface metal charge transfer character, facilitating triplet energy transfer and conferring superior sensitization ability. Leveraging these characteristics, the combination of PtAg28 sensitizer with a 9,10-diphenylanthracene annihilator/emitter attained an extremely low UC threshold of 0.81 mW cm-2 at 532 nm excitation, along with efficient green-to-blue TTA-UC with an internal quantum yield (ΦUCg) of 12.2% (50% maximum). This results in a pseudo-first-order TTA process with strong UC emission under 1-sun conditions.

3.
J Phys Chem Lett ; 14(49): 10967-10973, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38038710

RESUMO

Icosahedral Au13 nanoclusters are among the most typical superatoms and are of great interest as promising building blocks for nanocluster-assembled materials. Herein, the key parameters involved in the intersystem crossing (ISC) process of [Au13(dppe)5Cl2]3+ (Au13; dppe = 1,2-bis(diphenylphosphino)ethane) were characterized. Quenching experiments using aromatic compounds revealed that the T1 energy of Au13 is 1.63 eV. An integrative interpretation of our experimental results and the relevant literature uncovered important facts concerning the Au13 superatom: the ISC quantum yield is unity due to the ultrafast ISC (∼1012 s-1), the lowest absorption band includes contributions of direct singlet-triplet transitions, and there exists a large S1-T1 gap of 0.73 eV. To explain the efficient ISC, the El-Sayed rule was applied to the superatomic orbitals corresponding to the excited-state hole/electron distributions obtained from theoretical calculations. The strong spin-orbit coupling between the S1 and T2-T4 states offers a reasonable explanation for the ultrafast ISC.

4.
Chem Commun (Camb) ; 59(61): 9336-9339, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37404125

RESUMO

This article explores the challenges in synthesizing highly symmetric Cu(I)-thiolate nanoclusters and reports a nested Keplerian architecture of [Cu58H20(SPr)36(PPh3)8]2+ (Pr = CH2CH2CH3). The structure is made up of five concentric polyhedra of Cu(I) atoms, which create enough space to accommodate five ligand shells all within a range of 2 nm. This fascinating structural architecture is also linked to the unique photoluminescence properties of the nanoclusters.

6.
J Am Chem Soc ; 145(12): 6994-7004, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36939572

RESUMO

Ligand-protected noble-metal nanoclusters exhibit an innately triplet nature and have been recently recognized as emerging platforms for triplet sensitizers of photon upconversion (UC) via triplet-triplet annihilation. Herein, we report that a structurally flexible Au-Cu alloy nanocluster, [Au4Cu4(S-Adm)5(DPPM)2]+ (Au4Cu4; S-Adm = 1-adamantanethiolate, DPPM = bis(diphenylphosphino)methane), exhibited favorable sensitizer properties and superior UC performance. Contrary to the structurally rigid Au2Cu6(S-Adm)6(TPP)2 (Au2Cu6, TPP = triphenylphosphine), Au4Cu4 exhibited significantly better sensitizer characteristics, such as a near-unity quantum yield for intersystem crossing (ISC), long triplet lifetime (ca. 8 µs), and efficient triplet energy transfer (TET). The efficient ISC of Au4Cu4 was attributed to the practically negligible activation barriers during the ISC process, which was caused by the spin-orbit interaction between the two isoenergetic isomers predicted by theoretical calculations. A series of aromatic molecules with different triplet energies were used as acceptors to reveal the driving force dependence of the TET rate constant (kTET). This dependency was analyzed to evaluate the triplet energy and sensitization ability of the alloy nanoclusters. The results showed that the maximum value of kTET for Au4Cu4 was seven times larger than that for Au2Cu6, which presumably reflects the structural/electronic fluctuations of Au4Cu4 during the triplet state residence. The combination of the Au4Cu4 sensitizer and the 9,10-diphenylanthracene (DPA) annihilator/emitter achieved UC with internal quantum yields of 14% (out of 50% maximum) and extremely low threshold intensities (2-26 mWcm-2). This performance far exceeds that of Au2Cu6 and is also outstanding among the organic-inorganic hybrid nanomaterials reported so far.

7.
J Phys Chem Lett ; 13(40): 9272-9278, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173370

RESUMO

Photoluminescence (PL) quenching of ligand-protected noble-metal clusters (NMCs) by molecular oxygen is often used to define whether the PL of NMC is fluorescent or phosphorescent, and only energy transfer has been always considered as the quenching mechanism. Herein, we performed the Rehm-Weller analysis of the O2-induced PL quenching of 13 different NMCs and found that the charge-transfer (CT)-mediated mechanism dominates the quenching process. The quenching rate constant showed a clear dependence on the CT driving force, varied markedly from 106 to 109 M-1s-1. Transient absorption spectroscopy and photon upconversion measurements confirmed the triplet sensitization of aromatic molecules by NMCs regardless of the quenching degree by O2, establishing that the PL of NMCs under investigation originates from the excited triplet state (i.e., phosphorescence). The results herein provide an essential indicator for correctly determining whether the PL of an NMC is fluorescent or phosphorescent.

8.
Nanoscale ; 14(22): 7974-7979, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35470826

RESUMO

In photoluminescence (PL) quenching and triplet fusion upconversion experiments with fluorescent organic-molecule quenchers, it was revealed that a rod-shaped, phosphine- and thiolate-protected biicosahedral Au25 cluster (a representative di-superatomic molecule) exhibits only phosphorescence, not fluorescence, at room temperature with an intersystem crossing quantum yield of almost 100%. By virtue of these photophysical properties, this cluster can be used as a triplet sensitizer that undergoes direct singlet-triplet transitions in the near-infrared (NIR) region (730-900 nm), inducing photon upconversion from NIR to visible light.

9.
J Phys Chem B ; 125(35): 9950-9959, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34455782

RESUMO

Excited-state symmetry breaking (ESB) has attracted much attention because it is often observed in symmetric multipolar chromophores designed as two-photon absorption/emission materials. Herein, we report an ensemble and single-molecule fluorescence imaging and spectroscopy investigation of ESB in hexakis[4-(p-dioctylaminostyryl)phenylethynyl]benzene(DB6), a two-photon absorber possessing a C6-symmetric π-D6 structure (π = hexaethynylbenzene, D = (p-dioctylaminostyryl)phenyl group) consisting of three equivalent D-π-D moieties. Ensemble and single-molecule measurements and theoretical calculations revealed that DB6 undergoes a photoabsorption process with two orthogonal transition dipole moments, whereas it fluoresces with a single transition dipole moment after one- or two-step ESB upon photoexcitation, depending on the environmental polarity. In nonpolar solvents and polymer films, one of the three D-π-D sites becomes planar, and the excited state is localized on this moiety: a [Dδ+-πδ--Dδ+]* quadrupolar state is formed. In polar solvents, the symmetry is further broken within the planarized D-π-D moiety, and the excited state is localized on one of the two D-π sites; i.e., a D-[πδ--Dδ+]* dipolar state is generated. Hence, DB6 can behave like a multichromophore with multiple emission sites in the molecule, which was demonstrated by stepwise photobleaching under photon antibunching conditions.


Assuntos
Imagem Óptica , Fótons , Fotodegradação , Solventes , Análise Espectral
10.
ACS Appl Mater Interfaces ; 13(30): 35739-35749, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34291896

RESUMO

Two starburst-shaped organic chromophores, incorporating a hexaethynylbenzene core modified by five donor branches (D-branches) of (p-dioctylaminostyryl)benzene and one acceptor/anchoring branch (A-branch) of either carboxylic acid-terminated phenylethynylbenzene (SB-07) or cyanoacrylic acid-terminated diketopyrrolopyrrole (DPP)-thiophene (SB-08), were synthesized and applied to dye-sensitized solar cells (DSSCs). In these chromophores, the common donor moiety, five (p-dioctylaminostyryl)phenyl groups, exhibits excellent optical absorption in the visible region (molar absorption coefficient ε > 105 M-1 cm-1 below 500 nm). The A-branch of SB-07 does not possess strong electron-accepting properties; however, the A-branch of SB-08, the DPP-thiophene moiety, serves as a strong electron acceptor site. Furthermore, the intramolecular charge-transfer (ICT) transition between the thiophene and DPP moieties extends the optical absorption range to the near-infrared region (∼800 nm). Optimized DSSC devices using SB-08 with coadsorption of chenodeoxycholic acid, in conjunction with iodide/triiodide-based electrolytes, exhibited incident photon-to-current conversion efficiency (IPCE) exceeding 70% in the 370-700 nm range and over 20% even at 800 nm, with a short-circuit photocurrent density (Jsc) of 19.3 mA cm-2 and a power conversion efficiency (PCE) of 6.4% under AM 1.5G illumination (100 mW cm-2). These results are considerably better than those of SB-07 (Jsc = 7.0 mA cm-2, PCE = 3.3%). The starburst-shaped architecture presented here can be used as a novel structural motif for metal-free organic sensitizers because it enables flexible modification of the multiple D-branches that enhance light-harvesting ability and the A-branch that serves as an excited electron transport pathway.

11.
Angew Chem Int Ed Engl ; 60(2): 998-1003, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32981223

RESUMO

The synthesis of a cyclohexa-2,7-(4,5-diaryl)anthrylene ethynylene (1) was achieved for the first time by using 1,8-diaryl-3,6-diborylanthracene and 1,8-diaryl-3,6-diiodoanthracene as key synthetic intermediates. Macrocycle 1 possesses a planar conformation of approximately D6h symmetry, because of the triple-bond linker between the anthracene units at the 2,7-positions. It was confirmed that macrocycle 1, bearing bulky substituents at the outer peripheral positions, behaves as a monomeric form in solution without π-stacking self-association. Macrocycle 1 has an inner-cavity size that allows specific inclusion of [9]cycloparaphenylene ([9]CPP), but not [8]CPP or [10]CPP, through an aromatic edge-to-face CH-π interaction.

12.
Angew Chem Int Ed Engl ; 60(6): 2822-2827, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33295118

RESUMO

Photon upconversion (UC) from near-infrared (NIR) to visible has been realized using singlet-to-triplet absorption of sensitizers, which are currently limited to osmium complexes and semiconductor nanocrystals. Motivated by the atomically precise tunability of electronic structure and photophysical properties of noble metal clusters, which often possess absorption bands that extend into the NIR region, we investigated MAg24 (SR)18 (M=Ag, Pt; SR=2,4-dimethylbenzenethiolate) clusters as a new NIR-absorbing sensitizer for triplet-triplet annihilation UC. Combined with a blue light emitter, the NIR excitation (λex =785 nm) of Ag25 (SR)18 results in no UC emission, while PtAg24 (SR)18 exhibits strong UC emission. This enhancement is primarily due to a significant increase in the intersystem crossing quantum yield of the cluster associated with the spin-orbit coupling enhancement in the M@Ag12 core.

13.
Phys Chem Chem Phys ; 19(31): 20401-20411, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28730209

RESUMO

The geometric and electronic properties of silicon-atom-doped aluminum clusters, AlnSim (n = 7-30, m = 0-2), were investigated experimentally. The size dependences of the ionization energy and electron affinity of AlnSim show that the stability of AlnSim is governed by the total number of valence electrons in the clusters, where Al and Si atoms behave as trivalent and tetravalent atoms, respectively. Together with theoretical calculations, it has been revealed that neutral Al10Si and Al12Si have a cage-like geometry with central Si atom encapsulation and closed electronic structures of superatomic orbitals (SAOs), and also that they both exhibit geometric robustness against reductive and oxidative changes as cage-like binary superatoms of Si@Al10 and Si@Al12. As well as the single-atom-doped binary superatoms, the effect of symmetry lowering was examined by doping a second Si atom toward the electron SAO closing of 2P SAO, forming Al11Si2. The corresponding anion and cation clusters keep their geometry of the neutral intact, and the ionization energy is low compared to others, showing that Al11Si2 is characterized to be, Si@Al11Si as an alkaline-like binary superatom. For Al21Si2, a face-sharing bi-icosahedral structure was identified to be the most stable as dimeric superatom clusters.

14.
J Chem Phys ; 146(13): 134311, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28390373

RESUMO

We combine results from several different experiments to investigate the photophysics of acridine (Ac) and its hydrated clusters in the gas phase. Our findings are also compared with results from condensed phase studies. Similar to measurements of Ac dissolved in hydrocarbons, the lifetime of the first electronically excited state of isolated Ac in vacuum is too short for typical resonantly enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) experiments, hence no signal from REMPI and LIF can be attributed to monomeric Ac. Instead, sensitized phosphorescence emission spectroscopy is more successful in revealing the electronic states of Ac. Upon clustering with water, on the other hand, the lifetimes of the excited states are substantially increased to the nanosecond scale, and with two water molecules attached to Ac, the lifetime of the hydrated cluster is essentially the same as that of Ac in aqueous solutions. Detailed REMPI and ultraviolet-ultraviolet hole-burning experiments are then performed to reveal the structural information of the hydrated clusters. Although the formation of hydrogen bonds results in energy level reversal and energy separation between the first two excited states of Ac, its effect on the internal geometry of Ac is minimal, and all clusters with 1-3 water molecules demonstrate consistent intramolecular vibrational modes. Theoretical calculations reveal just one stable structure for each cluster under supersonic molecular beam conditions. Furthermore, different from mono- and di-water clusters, tri-water clusters consist of a linear chain of three water molecules attached to Ac. Consequently, the fragmentation pattern in the REMPI spectrum of tri-water clusters seems to be dominated by water trimer elimination, since the REMPI spectrum of Ac+·W3 is largely reproduced in the Ac+ mass channel, but not in the Ac+·W1 or Ac+·W2 channel.

15.
J Phys Chem A ; 121(8): 1577-1586, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191974

RESUMO

Supramolecular complexation of γ-cyclodextrin (γ-CD) with N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide (DMP-PDI) or N,N'-bis(2,6-dioctyl)perylene-3,4,9,10-tetracarboxylic diimide (C8-PDI) dye in an aqueous solution and in a γ-CD solid film were investigated via ensemble and single-molecule fluorescence spectroscopy. These two perylene diimide derivatives possess almost the same electronic structure but have different terminal functional groups. This structural difference leads to formation of an inclusion complex of γ-CD with DMP-PDI but not with C8-PDI in aqueous solution. In a γ-CD solid film, the distributions of the wavelengths of emission maximum (λmaxem) are strikingly different between these two dyes; a much narrower and blue-shifted λmaxem distribution was observed for C8-PDI relative to DMP-PDI. This difference is attributed to the fact that the C8-PDI molecules are bound at the γ-CD/glass interface as a result of spin-coating of the sample solution, whereas the DMP-PDI molecules form 1:1 and 1:2 inclusion complexes with conformational heterogeneities in the film. In comparison to the case for C8-PDI, more frequent on-off blinking events were observed for DMP-PDI. The blinking statistics of DMP-PDI in the γ-CD film exhibit both single-exponential and nonexponential (i.e., dispersive) kinetics, revealed by robust statistical analysis. Energetic consideration with the aid of theoretical calculations suggests that the underlying photophysics most probably involves hydrogen atom transfer (HAT) between the DMP-PDI guest and γ-CD host via higher excited (n, π*) triplet states. The hypothesis of HAT in the inclusion complex reasonably explains the experimental results; however, a charge transfer hypothesis cannot explain the results. The dispersive kinetics is attributable to the effect of thermal fluctuation in the forward and backward HAT reactions.

16.
J Phys Chem A ; 120(42): 8317-8325, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27754670

RESUMO

The effects of supramolecular encapsulation on the photophysics and photostability of a highly fluorescent dimeric derivative of 2,6-diacetoxy-9,10-bis(arylethynyl)anthracene (G2) were investigated by single-molecule fluorescence spectroscopy (SMFS). The fluorescence properties of free-G2 and its self-assembled boronic ester encapsulation complex, G2@(Cap)2, were compared in solution and a glassy polymer film. The fluorescence spectral characteristics and theoretical calculations suggest that the environment affects the excited-state conformation and subsequent fluorescence emission of G2@(Cap)2. In particular, in the liquid and polymer environments, G2@(Cap)2 emits a fluorescence photon in the planar and twist conformation, respectively, whereas the fluorescence-emitting conformation of free-G2 is planar in both environments. The luminous conformation differences between free-G2 and G2@(Cap)2 in polymer are reflected in the intersystem crossing (ISC) parameters (the ISC quantum yield and triplet lifetime), as determined by fluorescence autocorrelation analysis. The photobleaching yield revealed a 3-fold enhancement in the photostability of encapsulated G2 (relative to free-G2). Under the SMFS measurement conditions, the photostability of the encapsulation complex was independent of the guest's photostability and appeared to be dominated by the thermal stability of the Cap host molecule.

17.
Chemistry ; 22(47): 16760-16764, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27734532

RESUMO

Cyclic arylene ethynylene hexamer 1, composed of alternating 2,7-anthrylene ethynylene units and meta-phenylene ethynylene units, was synthesized. It shows C3 symmetry and possesses a flat and rigid conformation with a large equilateral triangle-like cavity. Macrocycle 1 self-associates through π-π stacking interactions between the anthracene-containing macrocyclic aromatic cores with indefinite-association constant KE =6980 m-1 in CDCl3 at 303 K. Macrocycle 1 also self-assembles into π-stacked nanofibers in the drop-cast film.

18.
Langmuir ; 31(25): 7158-65, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26068278

RESUMO

Newly developed simultaneous scanning photocurrent and luminescence microscopy was applied to ruthenium-based dye-sensitized solar cells (DSCs) comprising a cover glass photoanode with a 100 nm thick TiO2 layer. Using this, we have investigated the lateral variations of several parameters of these DSCs under short-circuit conditions. Simultaneous measurement of photocurrent and luminescence images for the same area of the DSC demonstrated submicrometric lateral resolution of our photocurrent microscopy, which is approximately 10 times better than the resolution of photocurrent microscopy used in past studies. The photovoltaic parameters, such as short-circuit current density, open-circuit voltage, and charge-collection efficiency, were thus evaluated for local (or submicrometric) regions of the DSCs. Furthermore, the photocurrent saturation behavior of the DSCs was examined as a function of the excitation rate and analyzed on the basis of a three-state kinetic model. This protocol allowed for quantification of the dye-adsorption number and dye-regeneration rate constant for any local area of the DSCs. Consequently, the correlations between the dye adsorption number, photovoltaic parameters, and regeneration rate constant, which are difficult to address through examination of the entire cell, were revealed by the "zoom-in" approach utilizing this high-resolution photocurrent microscopy.

19.
Photochem Photobiol Sci ; 13(8): 1130-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24887756

RESUMO

For single-molecule fluorescence studies, highly photostable fluorophores are absolutely imperative, because photo-induced degradation (i.e., photobleaching) limits the observation time of individual molecules. Herein, the photophysics and photostability of a highly fluorescent 9,10-bis(phenylethynyl)anthracene derivative (G) and its self-assembled boronic ester encapsulation complex (G@Cap) embedded in a glassy polymer matrix are investigated by single-molecule fluorescence spectroscopy (SMFS). The heterogeneity of the fluorescence emission wavelength and triplet blinking kinetics of the guest G are significantly decreased by supramolecular encapsulation due to conformational restriction and reduced heterogeneity in the local environment. A nearly 10-fold increase in the photostability of G due to encapsulation is quantitatively confirmed by evaluating the photobleaching yields of G and G@Cap. In addition, it is found that the G@Cap is >30-fold more photostable than rhodamine 6G, a widely used fluorescent dye in single-molecule studies. These results demonstrate that the G@Cap can serve as a very bright, long-lasting fluorescent probe for single-molecule studies.

20.
J Phys Chem A ; 118(37): 8298-308, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24725191

RESUMO

Organoeuropium sandwich clusters, comprising europium (Eu) and 1,3,5,7-cyclooctatetraene (COT) (Eu(n)(COT)(m)), were produced in the gas phase using a laser vaporization synthesis method. Photoionization mass spectra revealed an exclusive Eu(n)(COT)(m) formation with three compositions: m = n + 1, m = n, and m = n - 1, which, we propose, correspond to full-sandwich, half-sandwich, and inverted-sandwich structures, respectively. The charge distributions, metal-ligand bonding characteristics, and electronic structures of the clusters were comprehensively investigated by photoionization measurements of Eu(n)(COT)(m) neutrals and by photoelectron spectroscopy of Eu(n)(COT)(m)(-) and isoelectronic Ba(n)(COT)(m)(-) anions. The results confirmed that (1) highly ionic metal-ligand bonding is formed between Eu(2+) and COT(2-) within the sandwich structure (at the termini, ionic forms are Eu(+) and COT(-)) and (2) size dependence of orbital energy can be explained by the Coulombic interaction of simple point charge models between the detaching electrons and dipoles/quadrupoles. When the terminus of the sandwich clusters is Eu(2+), COT(2-), or Eu(0), the orbital energy of the electron detachment channel at the opposite terminus strongly depends on the cluster size. In this case, the molecular stack behaves as a one-dimensionally aligned dipole; otherwise, it behaves as a quadrupole, and the relationship between cluster size and electron detachment energy is much weaker. The study also reports on the 4f orbital energy in Eu ions and the formation mechanism of organoeuropium sandwich nanowires up to 12 nm in length. The nanowires are formed by successive charge transfer at the terminal part, Eu(+) and COT(-), which reduces the ionization energy and increases the electron affinity, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...